Rotation Invariant Features for HARDI
نویسندگان
چکیده
Reducing the amount of information stored in diffusion MRI (dMRI) data to a set of meaningful and representative scalar values is a goal of much interest in medical imaging. Such features can have far reaching applications in segmentation, registration, and statistical characterization of regions of interest in the brain, as in comparing features between control and diseased patients. Currently, however, the number of biologically relevant features in dMRI is very limited. Moreover, existing features discard much of the information inherent in dMRI and embody several theoretical shortcomings. This paper proposes a new family of rotation invariant scalar features for dMRI based on the spherical harmonic (SH) representation of high angular resolution diffusion images (HARDI). These features describe the shape of the orientation distribution function extracted from HARDI data and are applicable to any reconstruction method that represents HARDI signals in terms of an SH basis. We further illustrate their significance in white matter characterization of synthetic, phantom and real HARDI brain datasets.
منابع مشابه
On facilitating the use of HARDI in population studies by creating rotation-invariant markers
We design and evaluate a novel method to compute rotationally invariant features using High Angular Resolution Diffusion Imaging (HARDI) data. These measures quantify the complexity of the angular diffusion profile modeled using a higher order model, thereby giving more information than classical diffusion tensor-derived parameters. The method is based on the spherical harmonic (SH) representat...
متن کاملComplete Set of Invariants of a 4 th Order Tensor: The 12 Tasks of HARDI from Ternary Quartics
Invariants play a crucial role in Diffusion MRI. In DTI (2nd order tensors), invariant scalars (FA, MD) have been successfully used in clinical applications. But DTI has limitations and HARDI models (e.g. 4th order tensors) have been proposed instead. These, however, lack invariant features and computing them systematically is challenging. We present a simple and systematic method to compute a ...
متن کاملDense rotation invariant brain pyramids for automated human brain parcellation
The automatic parcellation of the human brain based on MR imaging isin several areas of high interest. In particular, identifying corresponding brain areasbetween different subjects is an indispensable prerequisite for any group analysis. Butalso, simple segmentations into different tissue types is an important preprocessingstep. We present a generic framework for describing and...
متن کاملSPHERE: SPherical Harmonic Elastic REgistration of HARDI data
In contrast to the more common Diffusion Tensor Imaging (DTI), High Angular Resolution Diffusion Imaging (HARDI) allows superior delineation of angular microstructures of brain white matter, and makes possible multiple-fiber modeling of each voxel for better characterization of brain connectivity. However, the complex orientation information afforded by HARDI makes registration of HARDI images ...
متن کاملRotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features
In this paper, we propose Local Binary Pattern Histogram Fourier features (LBP-HF), a novel rotation invariant image descriptor computed from discrete Fourier transforms of local binary pattern (LBP) histograms. Unlike most other histogram based invariant texture descriptors which normalize rotation locally, the proposed invariants are constructed globally for the whole region to be described. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information processing in medical imaging : proceedings of the ... conference
دوره 23 شماره
صفحات -
تاریخ انتشار 2013